spark on yarn模式下配置spark-sql訪問hive元數據
目的:在spark on yarn模式下,執行spark-sql訪問hive的元數據。并對比一下spark-sql 和hive的效率。
軟件環境:
- hadoop2.7.3
- apache-hive-2.1.1-bin
- spark-2.1.0-bin-hadoop2.7
- jd1.8
hadoop是偽分布式安裝的,1個節點,2core,4G內存。
hive是遠程模式。
spark的下載地址:
http://spark.apache.org/downloads.html
解壓安裝spark
tar -zxvf spark-2.1.0-bin-hadoop2.7.tgz.tar
cd spark-2.1.0-bin-hadoop2.7/conf
cp spark-env.sh.template spark-env.sh
cp slaves.template slaves
cp log4j.properties.template log4j.properties
cp spark-defaults.conf.template spark-defaults.conf修改spark的配置文件
cd $SPARK_HOME/conf
vi spark-env.shexport JAVA_HOME=/usr/local/jdk export HADOOP_HOME=/home/fuxin.zhao/soft/hadoop-2.7.3 export HDFS_CONF_DIR=${HADOOP_HOME}/etc/hadoop export YARN_CONF_DIR=${HADOOP_HOME}/etc/hadoop
vi spark-defaults.conf
spark.master spark://ubuntuServer01:7077 spark.eventLog.enabled true spark.eventLog.dir hdfs://ubuntuServer01:9000/tmp/spark spark.serializer org.apache.spark.serializer.KryoSerializer spark.driver.memory 512m spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three" #spark.yarn.jars hdfs://ubuntuServer01:9000/tmp/spark/lib_jars/*.jar
vi slaves
ubuntuServer01
** 配置spark-sql讀取hive的元數據**
##將hive-site.xml 軟連接到spark的conf配置目錄中: cd $SPARK_HOME/conf ln -s /home/fuxin.zhao/soft/apache-hive-2.1.1-bin/conf/hive-site.xml hive-site.xml ##將連接 mysql-connector-java-5.1.35-bin.jar拷貝到spark的jars目錄下 cp $HIVE_HOME/lib/mysql-connector-java-5.1.35-bin.jar $SPARK_HOME/jars
測試spark-sql:
先使用hive創建幾個數據庫和數據表,測試spark-sql是否可以訪問
我向 temp.s4_order表導入了6萬行,9M大小的數據。#先使用hive創建一下數據庫和數據表,測試spark-sql是否可以訪問 hive -e " create database temp; create database test; use temp; CREATE EXTERNAL TABLE t_source( `sid` string, `uid` string ); load data local inpath '/home/fuxin.zhao/t_data' into table t_source; CREATE EXTERNAL TABLE s4_order( `orderid` int , `retailercode` string , `orderstatus` int, `paystatus` int, `payid` string, `paytime` timestamp, `payendtime` timestamp, `salesamount` int, `description` string, `usertoken` string, `username` string, `mobile` string, `createtime` timestamp, `refundstatus` int, `subordercount` int, `subordersuccesscount` int, `subordercreatesuccesscount` int, `businesstype` int, `deductedamount` int, `refundorderstatus` int, `platform` string, `subplatform` string, `refundnumber` string, `refundpaytime` timestamp, `refundordertime` timestamp, `primarysubordercount` int, `primarysubordersuccesscount` int, `suborderprocesscount` int, `isshoworder` int, `updateshowordertime` timestamp, `devicetoken` string, `lastmodifytime` timestamp, `refundreasontype` int ) PARTITIONED BY ( `dt` string); load data local inpath '/home/fuxin.zhao/20170214003514' OVERWRITE into table s4_order partition(dt='2017-02-13'); load data local inpath '/home/fuxin.zhao/20170215000514' OVERWRITE into table s4_order partition(dt='2017-02-14'); "
輸入spark-sql命令,在終端中執行如下一些sql命令:
啟動spark-sql客戶端:
spark-sql --master yarn
在啟動的命令行中執行如下sql:
show database;
use temp;
show tables;
select * from s4_order limit 100;
select count(*) ,dt from s4_order group dt;
select count(*) from s4_order ;
insert overwrite table t_source select orderid,createtime from s4_order;
select count() ,dt from s4_order group dt; // spark-sql耗時 11s; hive執行耗時30秒
select count() from s4_order ; // spark-sql耗時2s;hive執行耗時25秒。
直觀的感受是spark-sql 的效率大概是hive的 3到10倍,由于我的測試是本地的虛擬機單機環境,hadoop也是偽分布式環境,資源較匱乏,在生產環境中隨著集群規模,數據量,執行邏輯的變化,執行效率應該不是這個比例。
文章列表